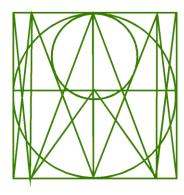
CH 37 – RATIONAL FUNCTIONS

□ Introduction

Remember what we call a number like $\frac{2}{7}$? This is called a *rational number* because it is the *ratio* of two integers. In a like manner, a *rational function* is the ratio of two special functions called *polynomial* functions. Since a rational function is essentially a fraction, we will have to avoid dividing by zero, which means the domain of a such a function may not be all real numbers.



□ POLYNOMIAL FUNCTIONS

Each of the following is a polynomial function:

$$y=7$$
 (a linear function – it's a horizontal line)
 $y=-3x+\sqrt{2}$ (a linear function – it's a line with slope = –3)
 $y=2x^2-x+9$ (a quadratic function – it's a parabola)
 $f(t)=\sqrt[4]{2}t^3-t^2$ (a cubic function)
 $P(w)=-\pi w^4+5w^2+8$ (a quartic function)
 $Q(a)=\frac{2}{3}a^5-4a+1$ (a quintic function)

The key to any *polynomial function* is that all the exponents on the input variable come from the set of whole numbers: $\{0, 1, 2, 3, \ldots\}$. The coefficients (the numbers in front of the variables), on the other hand, can come from anywhere in \mathbb{R} , the set of real numbers.

Consider the quartic (4th degree) polynomial function

$$y = -2\pi x^4 + \frac{9}{10}x^3 - 17x^2 + \sqrt{2}$$

First look at the exponents; they are all whole numbers. Even the last term, $\sqrt{2}$, can be written as $\sqrt{2}\,x^0$, and so even the exponent on this last term is a whole number. Thus, all the exponents on the x's (4, 3, 2, and 0) come from the whole numbers, while all the coefficients $(-2\pi, \frac{9}{10}, -17, \sqrt{2})$ come from \mathbb{R} . Considering the definition of polynomial function, the given function is indeed a polynomial function.

Each of the following is <u>not</u> a polynomial function:

$$y=\frac{1}{x}$$
 $(\frac{1}{x}=x^{-1} \text{ and } -1 \text{ is not a whole number})$
 $y=\sqrt{x}$ $(\sqrt{x}=x^{1/2} \text{ and } \frac{1}{2} \text{ is not a whole number})$
 $f(x)=\frac{1}{\sqrt[3]{x}}$ $(\frac{1}{\sqrt[3]{x}}=x^{-1/3} \text{ and } -\frac{1}{3} \text{ is not a whole number})$
 $g(x)=\left|x-1\right|$ (no absolute values allowed around the x)
 $E(x)=2^x$ (since x is in the exponent, it can be any number)
 $T(x)=\sin x$ (it's on your calculator, but it's not a polynomial function)
 $y=\log x$ (a log function can never be a polynomial function)
 $x^2+y^2=25$ (it's a circle – it's not a function of any kind)

Homework

- 1. Explain why $y = \pi x^5 \sqrt{2} x^3 + \frac{1}{4} x 17.5$ is a polynomial function.
- 2. Explain why $h(x) = \sqrt[3]{5}x^4 \sqrt{2x} + \frac{1}{2}$ is <u>not</u> a polynomial function.

3. The highest exponent on the variable in a polynomial function is called its *degree*. Find the degree of each polynomial function:

a.
$$y = \pi$$

b.
$$y = x^3 - 17x^2 + 8$$

c.
$$y = \sqrt{2}x^8 - \frac{\pi}{2}x^{10}$$
 d. $y = 7x + 5$

$$d. y = 7x + 5$$

- 4. a. What is the domain of any polynomial function?
 - b. T/F: Every parabola is a polynomial function.
 - c. T/F: Every non-vertical line is a polynomial function.
 - d. T/F: Every line is a polynomial function.

RATIONAL FUNCTIONS

A rational function is defined to be the ratio of two polynomial *functions*. If *P* and *Q* are polynomial functions, then $R = \frac{P}{Q}$ is a rational function. A typical example of a rational function is $y = \frac{3.9x^2 + 7x - 9}{x + 8}.$

EXAMPLE 1: Graph:
$$y = \frac{1}{x-2}$$

Since y is the ratio of a constant polynomial function Solution: and a linear polynomial function, we know that y is a rational function.

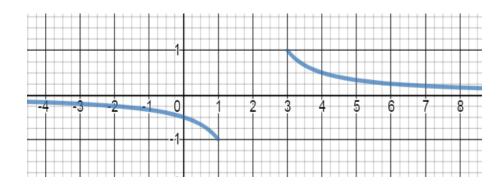
We begin our analysis of this rational function by determining the **domain**. In order that the fraction be defined, we must not divide by zero. What value of x makes the denominator zero? The value x = 2 will. (Just set x - 2 = 0 and solve for x.) Therefore, the domain is all real numbers except 2; that is, the domain is $\mathbb{R} - \{2\}$.

Intercepts come next. If x = 0, then $y = \frac{1}{0-2} = -\frac{1}{2}$. Thus, $(0, -\frac{1}{2})$ is the *y*-intercept. To find an *x* intercept, set y = 0. This gives $0 = \frac{1}{x-2} \implies 0(x-2) = \frac{1}{x-2}(x-2) \implies 0 = 1$, which has no solution. Thus, there are **no** *x*-intercepts.

Now for some ordered pairs that satisfy the formula $y = \frac{1}{x-2}$:

\boldsymbol{x}	\mathcal{Y}
-3	$-\frac{1}{5}$
-2	$-\frac{1}{4}$
-1	$-\frac{1}{3}$
0	$ \begin{array}{r} y \\ -\frac{1}{5} \\ -\frac{1}{4} \\ -\frac{1}{3} \\ -\frac{1}{2} \\ -1 \end{array} $
1	-1
2	Und.
3	1
4	$ \begin{array}{r} 1 \\ \hline \frac{1}{2} \\ \hline \frac{1}{3} \\ \hline \frac{1}{4} \end{array} $
5	$\frac{1}{3}$
6	$\frac{1}{4}$

If we plot these points and connect them with a smooth curve, we would get the following graph:

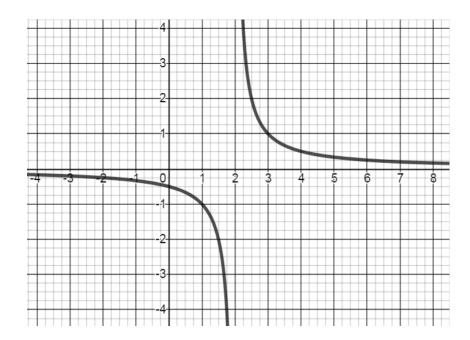


What some students do at this point is to lazily connect the points (3, 1) and (1, -1) with a straight line. Talk about jumping to conclusions! Our domain of $\mathbb{R} - \{2\}$ implies that x cannot be 2 in this function; the straight-line trick won't work. So we agree that a major chunk of the graph is missing.

How do we get a better picture of the graph? We try some *x*-values that are near 2:

$$(1\frac{1}{2}, -2)$$
 $(1\frac{3}{4}, -4)$ $(1\frac{7}{8}, -8)$ $(2\frac{1}{2}, 2)$ $(2\frac{1}{4}, 4)$ $(2\frac{1}{8}, 8)$

Adding these points to our previous attempt at a graph gives us a much better picture:



This graph has some real cool **limits**. Suppose we let x approach ∞ . The y-values are positive (the curve is above the x-axis), but are getting smaller and smaller, approaching zero. Thus, as $x \to \infty$, $y \to 0$. [This can be read: "As x grows infinitely large, y is getting closer and closer to 0.]

Now let x approach $-\infty$. The y-values are negative but are rising toward zero. Therefore, as $x \to -\infty$, $y \to 0$.

The number 2 seems to be an interesting x-value. Although x can never be 2 in this function, it looks like the curve is getting closer and closer to the vertical line x = 2. In fact, if we let x approach 2 from the right, the curve is growing taller and taller, and so we have the limit: As $x \to 2$ (from the right), $y \to \infty$. [This can be read: "As x gets closer and closer to 2, approaching 2 from the right (meaning values larger than 2), y is growing infinitely large.]

Now let x approach 2 from the left. This time the curve is dropping rapidly, toward negative infinity. This observation yields the limit: As $x \to 2$ (from the left), $y \to -\infty$.

Let's summarize the four limits we've deduced:

- $As x \to \infty, y \to 0.$
- As $x \to -\infty$, $y \to 0$.
- As $x \to 2$ (from the right), $y \to \infty$.
- As $x \to 2$ (from the left), $y \to -\infty$.

Do you see that as you move far to the right or far to the left, the curve gets closer and closer to the x-axis? We say that the line y = 0 (which is the x-axis) is a *horizontal asymptote*.

Now look at the region of the graph near x = 2. The curve gets closer and closer to the vertical line x = 2 (in fact, on both sides of the vertical line). We call the line x = 2 a *vertical asymptote*.

EXAMPLE 2: Graph:
$$y = \frac{2x-1}{x+2}$$

<u>Solution</u>: First we find the **domain**. Recall that this function will be undefined when the denominator is zero, which occurs when x = -2. Thus, the domain is $\mathbb{R} - \{-2\}$.

Now let's explore the intercepts:

If
$$x = 0$$
, then $y = \frac{2(0) - 1}{0 + 2} = -\frac{1}{2}$. There's a *y*-intercept at $(0, -\frac{1}{2})$.
If $y = 0$, then $0 = \frac{2x - 1}{x + 2} \implies 2x - 1 = 0 \implies x = \frac{1}{2}$. So $(\frac{1}{2}, 0)$ is an *x*-intercept.

It's time for some more ordered pairs for this function. Use your calculator to verify each of the following:

$$(-1, -3)$$
 $(1, 0.33)$ $(3, 1)$ $(5, 1.29)$ $(10, 1.58)$ $(15, 1.71)$ $(20, 1.77)$ $(100, 1.95)$ $(1000, 1.995)$

What's happening as x grows very large? It appears that y is approaching 2. That is, $\mathbf{as} \ x \to \infty, y \to 2$.

Now we'll let *x* go the other direction:

$$(-3, 7)$$
 $(-5, 3.67)$ $(-10, 2.63)$ $(-20, 2.28)$

$$(-100, 2.05)$$
 $(-1000, 2.01)$

These points show that as $x \to -\infty$, $y \to 2$.

Finally, here are some ordered pairs for x's near -2 (the only real number not in the domain):

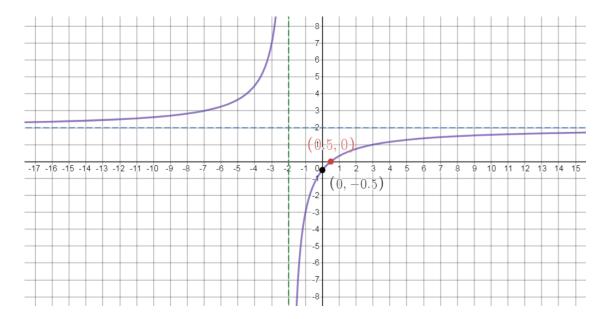
$$(-1.5, -8)$$
 $(-1.9, -48)$ $(-1.99, -498)$

Thus, as $x \to -2$ (from the right), $y \to -\infty$.

$$(-2.5, 12)$$
 $(-2.1, 52)$ $(-2.01, 502)$

Therefore, as $x \to -2$ (from the left), $y \to \infty$.

Plotting as many of the calculated points as possible, including the two intercepts, and considering the four limits we've found, the following graph (the two curvy pieces) emerges:



We can now be reasonably sure of the **asymptotes** (denoted by the dashed lines). Either by recalling the limits described above or by looking at the graph, we conclude that there's **a vertical asymptote** at x = -2 and **a horizontal asymptote** at y = 2.

EXAMPLE 3: Graph:
$$y = \frac{4}{1+x^2}$$

<u>Solution:</u> Why is this function rational? Because it's the $ratio \ \frac{P}{Q}$ of two polynomial functions: the constant polynomial

P(x) = 4 and the quadratic polynomial $Q(x) = 1 + x^2$.

To find the **domain**, set the denominator to zero to see what's <u>not</u> in the domain: $1 + x^2 = 0$. This equation has no solution in \mathbb{R} , since solving it leads to $x = \pm \sqrt{-1}$, which are not real numbers. In fact, for any value of x, the quantity $1 + x^2$ is <u>at least</u> 1 (why?), so it certainly can't be zero. Since the denominator can never be zero, there's nothing to be excluded from the domain, and therefore the domain is \mathbb{R} . We can also figure that the graph will <u>not</u> have a **vertical asymptote**, since the denominator can never be 0.

Notice that if we put in some positive value of x, we'll get a certain y-value. Now look at what will happen if we put -x (the *opposite* of x) into the formula. Since $(-x)^2$ is equal to x^2 , we will get the same y-value. This implies that the left side of the graph will be the mirror image of the right side. We say that the graph possesses y-axis symmetry (or is symmetric with respect to the y-axis).

Now we seek the **intercepts**. Set x = 0 to get y = 4, and so <u>the</u> <u>y-intercept is (0, 4)</u>. Now set y = 0, giving

$$0 = \frac{4}{1+x^2} \implies 0(1+x^2) = \frac{4}{1+x^2}(1+x^2) \implies 0 = 4$$

This absurd result indicates that the equation has no solution; hence, there are no *x*-intercepts.

It's time for some additional ordered pairs for this function:

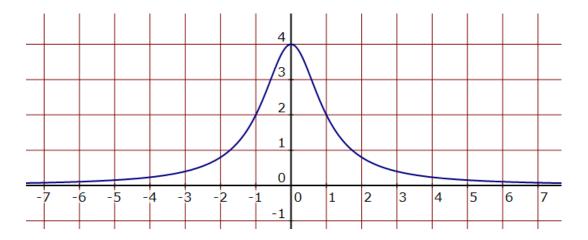
$$(1, 2)$$
 $(2, 0.8)$ $(3, 0.4)$ $(4, 0.24)$ $(10, 0.04)$ $(200, 0.0001)$

These points suggest the limit: As $x \to \infty$, $y \to 0$. This implies that y = 0 is a horizontal asymptote.

Here are some more ordered pairs, designed to see what happens as we approach the *y*-axis from the right:

$$(0.75, 2.56)$$
 $(0.5, 3.2)$ $(0.25, 3.76)$ $(0.1, 3.96)$ $(0.02, 3.998)$

If we plot all the points calculated so far, and if we recall the *y*-axis symmetry, we get the following graph:



We determined at the outset that the domain of this rational function is \mathbb{R} . Is it clear from the graph that this is indeed the case?

Homework

5. Consider the rational function in Example 2. Without referring to the graph, prove that *y* can have the value 2.01, but *y* can never have the value 2.

Find the domain: 6.

a.
$$y = \frac{2x + 7}{9}$$

a.
$$y = \frac{2x+7}{9}$$
 b. $f(x) = \frac{2x-3}{4+x}$

c.
$$g(x) = \frac{3x}{2x-10}$$
 d. $R(x) = \frac{x-1}{-7x+4}$

d.
$$R(x) = \frac{x-1}{-7x+4}$$

e.
$$f(x) = \frac{x^2 - 9}{x^2 - 100}$$
 f. $g(x) = \frac{8x - 16}{x^2 + 25}$

f.
$$g(x) = \frac{8x - 16}{x^2 + 25}$$

7. Find the intercepts:

a.
$$f(x) = \frac{x-4}{x-2}$$
 b. $y = \frac{3}{5x-15}$

b.
$$y = \frac{3}{5x - 15}$$

c.
$$y = \frac{2x+1}{x-3}$$

c.
$$y = \frac{2x+1}{x-3}$$
 d. $g(x) = \frac{5-x}{6x+1}$

8. Find the asymptotes:

a.
$$R(x) = \frac{8x+1}{4x-4}$$
 b. $y = \frac{2x-3}{2x+1}$

b.
$$y = \frac{2x-3}{2x+1}$$

c.
$$y = \frac{3x - 7}{x + 2}$$

c.
$$y = \frac{3x-7}{x+2}$$
 d. $h(x) = \frac{2x+7}{4x-4}$

$$y = \frac{1}{4 + x^2}.$$

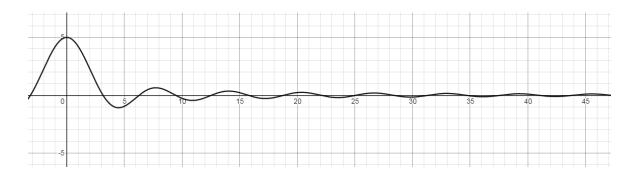
10. Perform a complete analysis of the function
$$y = \frac{2}{x-3}$$
.

11. Perform a complete analysis of the function
$$y = \frac{3x-5}{x-2}$$
.

12. Perform a complete analysis of the function
$$y = \frac{2}{2+x^2}$$
.

13. Perform a complete analysis of the function
$$y = \frac{-1}{x+1}$$
.

14. Consider the graph



Explain why the horizontal line y = 0 (that is, the *x*-axis) is a horizontal asymptote for the curve.

Practice Problems

- 15. a. Explain why $f(x) = \sqrt{7}x^{10} + \pi x^7 6x 1$ is a polynomial function. What is its degree?
 - b. Explain why $y = 3x^5 \sqrt{x} + \pi$ is <u>not</u> a polynomial function.
- 16. a. A horizontal line (is, is not) a polynomial function.
 - b. The function $y = \frac{1}{x}$ (is, is not) a polynomial function.
 - c. What is the degree of the polynomial function $y = 7x \pi$?
 - d. Is a circle a polynomial function?
- 17. Consider the rational function $y = \frac{7}{2x-8}$.
 - a. Find the domain.
 - b. Find all the intercepts.
 - c. Find all the asymptotes.
 - d. Calculate y if x = 4.1.

- 18. Find all the intercepts and asymptotes of $r(x) = \frac{8x+6}{2x-3}$, and graph.
- 19. Graph $y = \frac{-2x-2}{x-1}$.

As $x \to 1$ (from the right), $y \to$ ___.

As $x \to 1$ (from the left), $y \to$ ___.

As $x \to \infty$, $y \to$ ____.

As $x \to -\infty$, $y \to$ ____.

20. Graph $y = \frac{5}{2+x^2}$. Discuss domain, symmetry, and asymptotes.

As $x \to \infty$, $y \to$ ____.

As $x \to -\infty$, $y \to$ ____.

As $x \to 0$ (from the right), $y \to$ ___.

As $x \to 0$ (from the left), $y \to$ ___.

- 21. True/False:
 - a. $y = \sqrt[3]{7}x^{10} \pi x^3 + \sqrt{2}$ is a polynomial function.
 - b. $y = \frac{1}{x^5}$ is a polynomial function.
 - c. The graph of $f(x) = \frac{1}{2x+10}$ has a vertical asymptote at x = -5.
 - d. The graph of $g(x) = \frac{10x+9}{5x-11}$ has a horizontal asymptote at y = 10.
 - e. The domain of the function $y = \frac{6}{1+x^2}$ is $\mathbb{R} \{\pm 1\}$.
 - f. For the graph of $y = \frac{3x+1}{x-\pi}$, as $x \to \infty$, $y \to 3$.

Solutions

- **1**. All coefficients are from \mathbb{R} , and all exponents are from \mathbb{W} (the whole numbers).
- **2**. The middle term is $\sqrt{2} x^{1/2}$, and $\frac{1}{2} \notin \mathbb{W}$.
- **3**. a. 0
- b. 3
- c. 10
- d. 1

- **4**. a. ℝ
- b. False
- c. True
- d. False
- **5.** $y = \frac{2x-1}{x+2} \implies 2.01 = \frac{2x-1}{x+2} \implies 2.01x+4.02 = 2x-1 \implies x = -502.$ So, (-502, 2.01) is on the graph, and indeed y can be 2.01.

Now let's pretend that y could be 2; then

 $2 = \frac{2x-1}{x+2} \implies 2x+4 = 2x-1 \implies 4=-1 \implies \text{No solution}$. Thus,

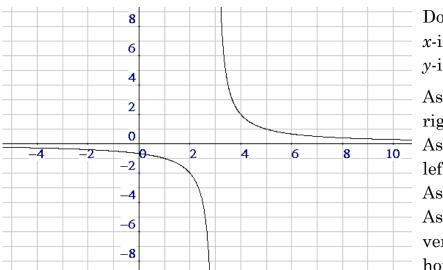
there is no x which will make y = 2.

- **6**. a. \mathbb{R} b. $\mathbb{R} \{-4\}$ c. $\mathbb{R} \{5\}$ d. $\mathbb{R} \left\{\frac{4}{7}\right\}$ e. $\mathbb{R} \{\pm 10\}$ f.
- **7**. a. (4, 0) (0, 2) b. $(0, -\frac{1}{5})$ c. $(-\frac{1}{2}, 0)$ $(0, -\frac{1}{3})$ d. (5, 0) (0, 5)
- **8.** a. x = 1 y = 2 b. $x = -\frac{1}{2}$ y = 1 c. x = -2 y = 3 d. x = 1 $y = \frac{1}{2}$
- **9**. Since the only way the formula can be messed up is by dividing by 0, and since the denominator can never be zero (verify this yourself), the domain is \mathbb{R} .

Setting x = 0 gives a y-value of 1/4, so the y-intercept is $(0, \frac{1}{4})$. If you set y = 0, you'll get no solution for y. Thus, there is no x-intercept.

There are no vertical asymptotes, since the denominator is never zero. Letting x approach either ∞ or $-\infty$, y approaches 0. Thus, a horizontal asymptote is y = 0 (the x-axis).

10.



Domain = $\mathbb{R} - \{3\}$ *x*-int: none

y-int: $(0, -\frac{2}{3})$

As $x \to 3$ (from the right), $y \to \infty$

As $x \to 3$ (from the

left), $y \to -\infty$

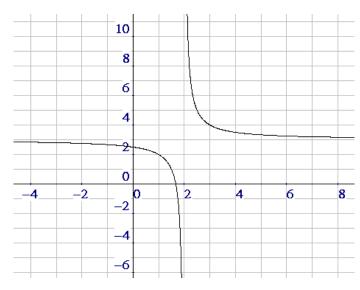
As $x \to \infty$, $y \to 0$

As $x \to -\infty$, $y \to 0$

vert asy: x = 3

horiz asy: y = 0

11.



Domain = $\mathbb{R} - \{2\}$

x-int: $(\frac{5}{3}, 0)$

y-int: $(0, \frac{5}{2})$

As $x \to 2$ (from the right),

 $y \to \infty$

As $x \to 2$ (from the left),

 $y \to -\infty$

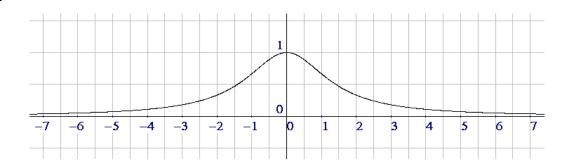
As $x \to \infty$, $y \to 3$

As $x \to -\infty$, $y \to 3$

vert asy: x = 2

horiz asy: y = 3

12.



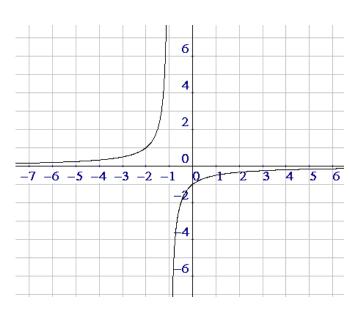
Domain = \mathbb{R} x-int: none y-int: (0, 1)

As $x \to \infty$, $y \to 0$ As $x \to -\infty$, $y \to 0$

vert asy: none horiz asy: y = 0

maximum point at (0, 1)

13.



Domain = $\mathbb{R} - \{-1\}$

x-int: none y-int: (0, -1)

As $x \to -1$ (from the right),

 $y \to -\infty$

As $x \to -1$ (from the left),

 $y \to \infty$

As $x \to \infty$, $y \to 0$

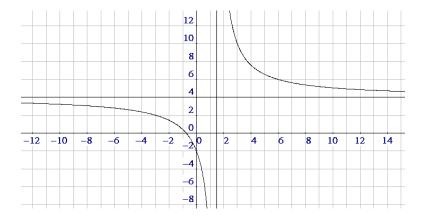
As $x \to -\infty$, $y \to 0$

vert asy: x = -1

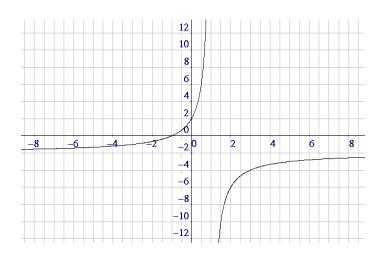
horiz asy: y = 0

14. Because of the limit: As $x \to \infty$, $y \to 0$. Even though the graph intersects its own horizontal asymptote infinitely often, the curve nevertheless continues to get closer and closer to the *x*-axis (the line y = 0), and this is ultimately what is meant by a horizontal asymptote.

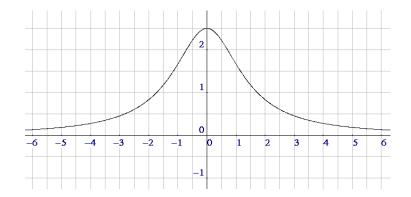
- f is a polynomial because the coefficients are real numbers and the **15**. a. exponents (the 10, 7 and 1) are whole numbers. Its degree is 10.
 - Look at the middle term; it can be written as $x^{1/2}$, a term whose exponent is not from the whole numbers.
- b. is not $(1/x = x^{-1})$ c. 1 d. It's not even a function, **16**. a. is let alone the special function called a polynomial.
- **17**.
- a. $\mathbb{R} \{4\}$ b. (0, -7/8) c. x = 4 and y = 0 d. 35
- Intercepts: (0, -2) and $(-\frac{3}{4}, 0)$; vert asy: $x = \frac{3}{2}$; horiz asy: y = 4**18**.



19.



Limits: $-\infty$; ∞ ; -2; -2



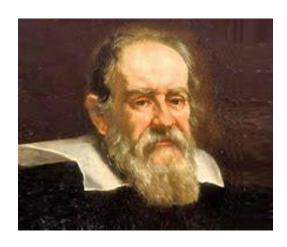
Domain = \mathbb{R} y-axis symmetry No vert asy

Horiz asy: y = 0

Limits: 0; 0; $\frac{5}{2}$; $\frac{5}{2}$

21. a. T b. F c. T d. F e. F f. T

"The universe cannot be read until we have learned the language and become familiar with the characters in which it is written. It is written in mathematical language."



Galileo Galiliei